Machine Learning for Molecular Graph Representations and Geometries

Ichigaku Takigawa

https://itakigawa.github.io/

RIKEN Center for Advanced Intelligence Project (AIP)
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University

TAKIGAWA Ichigaku
錃川 一学

Hi，I am a machine－learning researcher

－1995－2004 Hokkaido Univ（Grad School．Engineering） 2004 PhD Computer Science
－2005－2011 Kyoto Univ（Inst．Chemical Research） Bioinformatics Center，Assist．Prof． Grad School Pharmaceutical Sciences，Assit．Prof．
－2012－2018 Hokkaido Univ（Grad School．Info Sci \＆Tech） Large－Scale Knowledge Processing Lab，Assoc．Prof． 2015－2018 JST PRESTO for Materials Informatics
－2019－RIKEN Center for AI Project 2019－Hokkaido Univ
（Inst．Chemical Reaction Design \＆Discovery） I belong to a joint research team based at Kyoto with RIKEN AIP and Kyoto Univ CiRA， working on stem cell biology．

https://itakigawa.github.io

But also, I am a machine-learning user

- 1995-2004 Hokkaido Univ (Grad School. Engineering) 2004 PhD Computer Science
- 2005-2011 Kyoto Univ (Inst. Chemical Research) Bioinformatics Center, Assist. Prof. Grad School Pharmaceutical Sciences, Assit. Prof.
- 2012-2018 Hokkaido Univ (Grad School. Info Sci \& Tech) Large-Scale Knowledge Processing Lab, Assoc. Prof. 2015-2018 JST PRESTO for Materials Informatics
- 2019- RIKEN Center for AI Project 2019- Hokkaido Univ
(Inst. Chemical Reaction Design \& Discovery) I belong to a joint research team based at Kyoto with RIKEN AIP and Kyoto Univ CiRA, working on stem cell biology.

This talk

Machine Learning (ML) for Molecules

1. ML in a nutshell
2. The dark side: Modern aspects of ML
3. The light side: Deep learning for molecules
4. Challenges

ML converts data into "prediction"

ML is a new (lazy) way of programming

ML generates a computer program just by giving many input-output examples even when we don't know the underlying mechanism between inputs and outputs.

This simple idea is more powerful than you may think

Remarkably powerful when we have relevant input-output examples (it's useless if we don't)

This simple idea is more powerful than you may think

Remarkably powerful when we have relevant input-output examples (it's useless if we don't)

Many ways to mathematically represent the boundary

This is why you see too many algorithms when you start to learn ML...

But anyway, we're just tweaking parameters for a good fit

Internally, we're just fitting a surface to given points by adjusting its parameter values.

Random Forest

But anyway, we're just tweaking parameters for a good fit

Internally, we're just fitting a surface to given points by adjusting its parameter values.

Random Forest

Pitfall: The lure of wishful wordings

The current ML is stunningly powerful but it's very different from our sci-fi image of "Al". Be careful about these "wishful" wordings that needlessly distract and mislead us!

"Artificial intelligence" doesn't mean that we have something artificial also intelligent like us. "Machine learning" doesn't mean that machines actually learn things like us.

SIGART Nowsletter No. 57 April 1976

ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY
 Drew NADermott
 MIT AI Lab Cambridge, Mass 02139

As a field, artificial intelligence has always been on the border of respectability, and therefore on the border of crackpottery. Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we are over the border. We have been very defensive toward this charge, drawing ourselves up with dignity when it is made and folding the cloak of Science about us. On the other hand, in private, we have been justifiably proud of our willingness to explore weird ideas, because pursuing them is the only way to make progress.

Deep Learning (Representation Learning)

Deep Learning (Representation Learning)

Input variables

Deep Learning (Representation Learning)

Deep Learning (Representation Learning)

Deep Learning (Representation Learning)

Input variables
Latent variables

The Dark Side: Modern Aspects of ML

- High dimensionality: Too many input variables

We tend to use many input variables because ML is completely unaware of any information not in the input variables. Missing relevant factors results in spurious correlation.
e.g.) 100×100 RGB image $=30$ thousand variables
1000×1000 RGB image $=3$ million variables

The Dark Side: Modern Aspects of ML

- High dimensionality: Too many input variables

We tend to use many input variables because ML is completely unaware of any information not in the input variables. Missing relevant factors results in spurious correlation.
e.g.) 100×100 RGB image $=30$ thousand variables 1000×1000 RGB image $=3$ million variables

- Overrepresentation: Too many parameters

Remember that we're fitting a surface with hundreds million parameters in a several million dimensional space!
e.g.) ResNet50: 26 million params ResNet101: 45 million params EfficientNet-B7: 66 million params VGG19: 144 million params

12-layer, 12-heads BERT: 110 million params 24-layer, 16-heads BERT: 336 million params GPT-2 XL: 1558 million params
GPT-3: 175 billion params

The Dark Side: Modern Aspects of ML

- Data hungriness: Big data is big for human, but can be too small for ML models...

As a result, it requires huge data to make current ML models work.

The Dark Side: Modern Aspects of ML

- Data hungriness: Big data is big for human, but can be too small for ML models... As a result, it requires huge data to make current ML models work.

Think twice about how complex the input-output relationship you are trying to find will be. How many samples will be statistically sufficient to estimate 2-variable functions like these? What if you're fitting a 100 -variable function?

Graph Neural Networks (aka Geometric Deep Learning)

Graph Representation Learning

We can seek for a good representation vector that can be computed from a molecular graph, which is expected to be superior to any man-made descriptors!

Beyond Man-Made Descriptors

- 0-Dimensional Descriptors
- Constitutional descriptors
- Count descriptors
- 1-Dimensional Descriptors
- List of structural fragments
- Fingerprints
- 2-Dimensional Descriptors
- Graph invariants
- 3-Dimensional Descriptors
- 3D MoRSE, WHIM, GETAWAY, ...
- Quantum-chemical descriptors
- Size, steric, surface, volume, ...
- 4-Dimensional Descriptors
- GRID, CoMFA, Volsurf, ...
"Vol 1 contains an alphabetical listing of more than 3,300 descriptors"

"Dragon calculates 5,270 molecular descriptors"

DRAGON 7.0

DESCRIPTORS FINCERPRINTS PROJECT AND SCIENTIFIC WORKS
Dragon 7.0 calculates 5,270 molecular descriptors, organized in different logical blocks as in the previous versions. Bloch Cragon 7.0 calculates 5,27 molecular descriptors, organized in difterent logical blocks as in the previous versions.
are further divided into sub-bloccks to make management, selection, and analysis of descriptors easier. Following, the summary of molecular descriptors blocks calculated by Dragon 7.0 is reported.

block no	block name	DESCRIPTORS
1	Constitutional	47
2	Ring descriptors	32
3	Topological indices	75
4	Walk and path counts	46
5	Connectivity indices	${ }^{37}$
6	Information indices	50
7	$2 \mathrm{matrix-based} \mathrm{descriptors}$	607
8	20 autocorrelations	213
9	Burden eigenvalues	96
10	P-VSA-like descriptors	55

Message Passing: The Inner Workings of GNNs

Use Case 1: Virtual Screening (QSAR/QSPR)

NCI Human Tumor Cell Line Growth Inhibition Assay (PubChem AID 1)

Active (2,814)			Activity	Score	LogGI50_M (?)	- Inactive $(48,922)$			Activity	Score	LogGI50_M (?)
Structure	CID	SID				Structure	CID	SID			
	5298	121832	Active	67	-8	$=0$	390324	521601	Inactive	0	-4
	363173	493713	Active	43	-6.5871		390311	521588	Inactive	0	-4
	399631	530868	Active	51	-7.0678		390312	521589	Inactive	4	-4.214

Use Case 1: Virtual Screening (QSAR/QSPR)

Standard ML
ExtraTrees
w/ ECFP6(1024)

GNN
ChemProp (Directed MPNN)

ChemProp (Yang et al, 2019)

from MIT MLPDS (Machine Learning for Pharmaceutical Discovery and Synthesis) Consortium

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract
 Authors
Jonathan M. Stokes, Kevin Yang, Kyle Swanson, ..., Tommi S. Jaakkola, Regina Barzilay, James J. Collins

Correspondence regina@csail.mit.edu (R.B.) jimjc@mit.edu (J.J.C.)

nature

NEWS | 20 February 2020

Powerful antibiotics discovered using AI

Machine learning spots molecules that work even against 'untreatable' strains of bacteria

Use Case 2: Fast Approximation for OM Calculations

		property	value
	0	dipole_moment	7.214000
- Internal energy	1	isotropic_polarizability	65.360001
- Free energy - Zero point vibrational energy	2	homo	-6.280388
	3	lumo	-1.649010
	4	gap	4.631378
- Energy of HOMO - Energy of LUMO - Isotropic polarizabiliity - Dipole moment	5	electronic_spatial_extent	884
	6	zpve	2.610307
	7	energy_uo	-10742.250000
	8	energy_U	-10742.060547
- Electronic spatia extent - Enthalpy - Heat capacity	9	enthalpy_H	-10742.035156
	10	free_energy_6	-10743.111328
	11	heat_capacity	24.756001
	12	U_O_atom	-56.213203
	13	U_atomization	-56.525291
	14	H_atomization	-56.833679
	15	G_atomization	-52.407772
	16	rotational_a	5.712810
	17	rotational_b	1.644960
	18	rotational_c	1.287640

Use Case 2: Fast Approximation for OM Calculations

Use Case 2: Fast Approximation for OM Calculations

GNN predictions are strikingly accurate, in particular, for predicting enegies of a molecule of a conformation or forces at each atom to transition towards a more stable conformation!

Predictions for Test Data by SchNet (Schütt et all, 2017)

Predictions for Test Data by DimeNet (Klicpera et all, 2020)

Big Challenge: Rashomon Effect and Underspecification

Rashomon Effect: The multiplicity of good ML models
In general, we can have many good but very different ML models that give equally accurate predictions for the given data.

Big Challenge: Rashomon Effect and Underspecification

Rashomon Effect: The multiplicity of good ML models

In general, we can have many good but very different ML models that give equally accurate predictions for the given data.

- Many explanations can exist for a single set of finite observations in general . (whether they are given by ML or by human experts.)

Big Challenge: Rashomon Effect and Underspecification

Rashomon Effect: The multiplicity of good ML models

In general, we can have many good but very different ML models that give equally accurate predictions for the given data.

- Many explanations can exist for a single set of finite observations in general . (whether they are given by ML or by human experts.)
- They can largely disagree in a underspecified situation where data is statistically insufficient.

Any ML model will work

Different models can give very different predictions for out-of-sample cases

Designing Relevant Inductive Bias for Molecules

In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

Designing Relevant Inductive Bias for Molecules

In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

- Even the number of data is big for us, it can be small given the number of input variables and model parameters. (hundreds million parameters in a several million input space...)

Designing Relevant Inductive Bias for Molecules

In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

- Even the number of data is big for us, it can be small given the number of input variables and model parameters. (hundreds million parameters in a several million input space...)
- Most experiments are planned by human scientists and therefore are subject to a variety of biases from human cognitive biases, heuristics and social influences.

Designing Relevant Inductive Bias for Molecules

In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

- Even the number of data is big for us, it can be small given the number of input variables and model parameters. (hundreds million parameters in a several million input space...)
- Most experiments are planned by human scientists and therefore are subject to a variety of biases from human cognitive biases, heuristics and social influences.
- Robotization/automation of experiments is promising in terms of reproducibility, but not a direct solution for this because the chemical space is astronomical (10^{60} or so). We might be able to have 10^{6} robots in future, but 10^{60} would be physically hopeless...

Designing Relevant Inductive Bias for Molecules

In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

- Even the number of data is big for us, it can be small given the number of input variables and model parameters. (hundreds million parameters in a several million input space...)
- Most experiments are planned by human scientists and therefore are subject to a variety of biases from human cognitive biases, heuristics and social influences.
- Robotization/automation of experiments is promising in terms of reproducibility, but not a direct solution for this because the chemical space is astronomical (10^{60} or so). We might be able to have 10^{6} robots in future, but 10^{60} would be physically hopeless...

One remedy: Fusing rationalism (theory/simulation) and empiricism (ML/data-driven)
Encoding what we already know for ML not to needlessly explore chemically invalid forms
\longrightarrow In other words, restrict ML models not to represent irrelevant input-output mappings.

Designing Relevant Inductive Bias for Molecules

A molecular graph (RDKit)

Designing Relevant Inductive Bias for Molecules

SchNet (Schütt et al, 2017): Standard Geometric GNN

SchNet (Schütt et al, 2017): Standard Geometric GNN

SchNet (Schütt et al, 2017): Standard Geometric GNN

SchNet (Schütt et al, 2017): Standard Geometric GNN

QSAR/QSPR, QM Approximation, Molecule Generations,

DimeNet++

Klicpera et al (NeurIPS WS2022)
https://arxiv.org/abs/2011.14115

GemNet

Klicpera et al (NeurIPS2021)
https://arxiv.org/abs/2106.08903

GeoMol

Ganea et al (NeurIPS2021)
https://arxiv.org/abs/2106.07802
generates distributions of low-energy molecular 3D conformers

"Learn to Simulate"

DeepMind > Research > Learning to Simulate Complex Physics with Graph Networks

厚 Publications

SHARE
(*) (f) in
publication links

\rightarrow VIEW OPEN SOURCE

```
publication
```

ICML

Learning to Simulate Complex Physics with Graph Networks

Abstract

Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Networkbased Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.

"Learn to Simulate"

DeepMind > Research > Learning to Simulate Complex Physics with Graph Networks

厚 Publications

SHARE
(*) (f) in
publication links

\rightarrow VIEW OPEN SOURCE

```
publication
```

ICML

Learning to Simulate Complex Physics with Graph Networks

Abstract

Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Networkbased Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.

Fusing ML + Quantum Chemistry

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

Nature Communications 10, Article number: 5024 (2019)
b e

Fusing ML + Quantum Chemistry

Machine Learning at the Atomic Scale (Chem. Rev.) https://pubs.acs.org/toc/chreay/121/16

CHEMICAL REVIEWS

Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems
John A. Keith,* Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger,
Klaus-Robert Müller,* and Alexandre Tkatchenko*
Cite This: https://doi.org/10.1021/acs.chemrev. 1 1c00107
©
Read Online

CHEMICAL REVIEWS

pubs.acs.org/CR
Ab Initio Machine Learning in Chemical Compound Space Bing Huang and O . Anatole von Lilienfeld*

Data Science Meets Chemistry (Acc. Chem. Res.)
https://pubs.acs.org/page/achre4/data-science-meets-chemistry

CHEMICAL REVIEWS

Physics-Inspired Structural Representations for Molecules and Materials

Felix Musil, Andrea Grisafi, Albert P. Bartók, Christoph Ortner, Gábor Csányi, and Michele Ceriotti*

```
Cite This: Chem. Rev. 2021, 121, 9759-9815
```

© Read Online

ACCOUNTS

of chemical research

Learning to Approximate Density Functionals
Published as part of the Accounts of Chemical Research special issue "Data Science Meets Chemistry". Bhupalee Kalita, Li Li, Ryan J. McCarty, and Kieron Burke*

Cite This: Acc. Chem. Res. 2021, 54, 818-826 Read Online

One Final Remark: "The True Dark Side"

"We're able to predict smth." does not directly mean "We're able to understand it" nor "We're able to discover it". We still need further considerations to impact natural sciences...

This slide is available at

https://itakigawa.github.io/news.html

Machine Learning (ML) for Molecules

1. ML in a nutshell

- ML converts data into "prediction"
- ML is a new (lazy) way of programming

2. The dark side: Modern aspects of ML

- High dimensionality: Too many input variables
- Overrepresentation: Too many parameters
- Data hungriness: Big data is big for human, but can be too small for ML models...

3. The light side :

Deep learning for molecules

- Graph Neural Networks (GNNs)
- Case 1: Virtual Screening (QSAR/QSPR)
- Case 2: Fast Approximation for QM Calculations

4. Challenges

- Rashomon Effect and Underspecification
- Designing Relevant Inductive Bias for Chemistry
- Prediction does not directly mean Understanding or Discovery

