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This talk

Machine Learning (ML) for Molecules

1. ML in a nutshell

2. The dark side: Modern aspects of ML

3. The light side: Deep learning for molecules
4. Challenges

May the ML Force be with you...
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ML is a new (lazy) way of programming

ML generates a computer program just by giving many input-output examples
even when we don't know the underlying mechanism between inputs and outputs.

— Object recognition —
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This simple 1dea 1s more powerful than you may think

Remarkably powerful when we have relevant input-output examples (it's useless if we don't)

INPUT OUTPUT

pix2pix
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Many ways to mathematically represent the boundary

This is why you see too many algorithms when you start to learn ML...

=_ 4 Logistic Decision Nearest Random Gaussian Neural
7 Regression Tree Neighbor Forest

GBDT SVM Process Network




But anyway, we're just tweaking parameters for a good fit

Internally, we're just fitting a surface to given points by adjusting its parameter values.
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Pitfall: The lure of wishful wordings

The current ML is stunningly powerful but it's very different from our sci-fl image of "Al".
Be careful about these "wishful” wordings that needlessly distract and mislead us!

"Artificial intelligence” doesn't mean that we have something artificial also intelligent like us.
"Machine learning” doesn't mean that machines actually learn things like us.

SIGART Newsletter No. 57 April 1976
What’s Next for Dee -
Leaming:Arcer At

IEEE Sp

i

Inside DeepMind’s Robot
Lab>An Al powerhouse takes
on “catastrophic forgetting”

FOR THE
TECHNOLOGY
INSIDER

ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY
Drew McDermoft

e ctrum MIT Al Lab Cambridge, Mass 02139

The 7 Biggest Weaknesses
of Neural Nets > Surprise!
One of them is math

P.42

As a field, artificial intelligence has always been on the border
P . of respectability, and therefore on the border of crackpottery.
: \ Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we
are over the border. We have been very defensive toward this
charge, drawing ourselves up with dignity when it is made and
Why Is AI So Dumb? | folding the cloak of Science about us. On the other hand, in private,
A SPECIAL REPORT | we have been justifiably proud of our willingness to explore weird

ideas, because pursuing them is the only way to make progress,



Deep Learning (Representation Learning)
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Deep Learning (Representation Learning)
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The Dark Side: Modern Aspects of ML

* High dimensionality: Too many input variables

We tend to use many input variables because ML is completely unaware of any information
not in the input variables. Missing relevant factors results in spurious correlation.

e.d.) 100 x 100 RGB image = 30 thousand variables
1000 x 1000 RGB image = 3 million variables
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* High dimensionality: Too many input variables

We tend to use many input variables because ML is completely unaware of any information
not in the input variables. Missing relevant factors results in spurious correlation.

e.d.) 100 x 100 RGB image = 30 thousand variables
1000 x 1000 RGB image = 3 million variables

e Overrepresentation: Too many parameters

Remember that we're fitting a surface with hundreds million parameters in a several million
dimensional space!

e.g.) ResNet50: 26 million params 12-layer, 12-heads BERT: 110 million params
ResNet101: 45 million params 24-layer, 16-heads BERT: 336 million params
EfficientNet-B7: 66 million params GPT-2 XL: 1558 million params

VGG19: 144 million params GPT-3: 175 billion params



The Dark Side: Modern Aspects of ML

* Data hungriness: Big data is big for human, but can be too small for ML models...

As a result, it requires huge data to make current ML models work.



The Dark Side: Modern Aspects of ML

* Data hungriness: Big data is big for human, but can be too small for ML models...
As a result, it requires huge data to make current ML models work.

Think twice about how complex the input-output relationship you are trying to find will be.

How many samples will be statistically sufficient to estimate 2-variable functions like these?
What if you're fitting a 700-variable function?
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Graph Neural Networks (aka Geometric Deep Learning)

Other Info (Conditions, Environment, ...)
An input graph
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Graph Representation Learning

We can seek for a good representation vector that can be computed from a molecular graph,

which is expected to be superior to any man-made descriptors!
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Beyond Man-Made Descriptors

e 0-Dimensional Descriptors Vol 1 contains an alphabetical ‘Dragon calculates 5,270 molecular

. : listing of more than riptors” riptors”
« Constitutional descriptors sting of more than 3,300 descriptors” descriptors

e Count descriptors kode
+ 1-Dimensional Descriptors e

* List of structural fragments Molecular Descriptors m— S =
* Fingerprints for Chemoinformatics

are further divided into sub-blocks to make management, selection, and analysis of descriptors easier. Following, the

summary of molecular descriptors blocks calculated by Dragon 7.0 is reported.

* 2-Dimensional Descriptors 00, Wofed g Ealuged B
. . Volume I: Alphabetical Listing
* Graph invariants e :

. . Volume 41

BLOCK NO BLOCK NAME DESCRIPTORS

* 3-Dimensional Descriptors we | L
* 3D MoRSE, WHIM, GETAWAY, ... G ot 4 :
* Quantum-chemical descriptors o 5 ”
* Size, steric, surface, volume, ... e p

* 4-Dimensional Descriptors
* GRID, CoMFA, Volsurf, ...

é 9 Burden eigenvalues 96

10 P-VSA-like descriptors 55
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Message Passing: The Inner Workings of GNNs
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Use Case 1: Virtual Screening (QSAR/QSPR)

NCI Human Tumor Cell
Line Growth Inhibition
Assay (PubChem AID 1)

O Active (2,814)

Structure CID

_6-
g @ @ 363173

399631

SID

121832

493713

530868

Activity

-
e Classification Task

Activity (Active or Inactive
— |
* Regression Task

Very Noisy, Complex Relationship...

_ LogGI50 value ---------- GI50: concentration required
for 50% inhibition of growth

O Inactive (48,922)

Score LogGI50_.M () Activity Score LogGI50_.M (®
Structure CiD SID

67 8 :\Fﬁ% 390324 521601 0 -4

N \
43 -6.5871 % 390311 521588 0 -4
51 -7.0678 390312 521589 4 -4.214



Use Case 1: Virtual Screening (QSAR/QSPR)

y pred

Standard ML

ExtraTrees
w/ ECFP6(1024)

GNN

ChemProp
(Directed MPNN)

* Classification Task Activity (Active or Inactive)

95.079%

* Regression Task

LogGI50 value

-2

-3{ RMSE 0.7970
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s eslim
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_6 N Jm
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-10 T T
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y true

95.604%

{ RMSE 0.6076

ChemProp (Yang et al, 2019)

from MIT MLPDS (Machine Learning for Pharmaceutical
Discovery and Synthesis) Consortium

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract Authors

. Jonathan M. Stokes, Kevin Yang,
incidmesssos Aot o R, Kyle Swanson, ..., Tommi S. Jaakkola,
oo (upper kmit 10°4) | Regina Barzilay, James J. Collins

N E
o / 13;,;"& ' Correspondence
s €, p regina@csail.mit.edu (R.B.),
NI B e, jimjc@mit.edu (J.J.C.)
nature

NEWS | 20 February 2020

Powerful antibiotics discovered
using Al
Machine learning spots molecules that work even against ‘untreatable’ strains of bacteria.

Jo Marchant




Use Case 2: Fast Approximation for QM Calculations

|nput Output property value
0 dipole_moment 7.214000
* Internal energy 1 isotropic_polarizability 65.360001
* Free energy 2 homo -6.280388
« Zero point vibrational 3 o 1649010
éen ergy a4 gap 4.631378
s ’ Energy OfHOMO 5 electronic_spatial_extent 884.587524
gdb_21014 + Energy of LUMO 6 zve 2610307
~ 1000 sec * Isotropic polarlzablluty 7 energy U0 -10742.250000
X y z ) DllpOle m.oment. | 8 energy U -10742.060547
O 0.314096 -0.129589 -0.389150 Quantum mechanical Electronic Spatla - enthalpy H -10742.035156
C 0111219 2102676 -0.051749 . extent
calculations 10 free_energy. G -10743.111328
C 2.331344 3.941075 0.212303 . Entha[py . - ) v 756001
O 4667017 2677399 0.437948 . Heat capacity . e ;Czpafly 56'213203
_U_atom - )
€ O15249T 9062585 1780599 by solving a one-electron Schrodinger s U stomisation 56605001
C 4732264 5.009654 -3.282819 . . - :
C 2562527 5549427 -2.143825 equation (KOhn Sham equatlon) 14 H_atomization -56.833679
H -1.771427 3.048695 0.071772 ~ 15 G_atomization -52.407772
H 1977918 5086871 1.919865 H \Ij — E qj 16 rotational_a 5.712810
H 8.050245 3.696867 -1.222422 17 rotational_b 1.644960
H 6.372399 1.276980 -2.825015 Density Functional Theory (DFT) 18 rotational_c 1.287640
H 5428656 5.805758 -5.033531 B3LYP/6-31G(2df, p) level
H 1118529 6.857080 -2.763050 https://qcarchive.molssi.org/apps/ml_datasets/



Use Case 2: Fast Approximation for QM Calculations

100,000 times faster!

input output property value

~ 001 secC 0 dipole_moment 7.214000

* Internal energy 1 isotropic_polarizability 65.360001
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Use Case 2: Fast Approximation for QM Calculations

GNN predictions are strikingly accurate, in particular, for predicting enegies of a molecule of a
conformation or forces at each atom to transition towards a more stable conformation!

Predictions for Test Data by SchNet (Schiitt et al, 2017)
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Predictions for Test Data by DimeNet (Klicpera et al, 2020)
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Big Challenge: Rashomon Effect and Underspecification

Rashomon Effect: The multiplicity of good ML models

In general, we can have many good but very different ML models that give equally accurate
predictions for the given data.

* Many explanations can exist for a single set of finite observations in general .
(whether they are given by ML or by human experts.)

* They can largely disagree in a underspecified situation where data is statistically insufficient.

Any ML model will work Different models can give very different predictions for out-of-sample cases

N X
0.6
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In reality, almost all cases in sciences might be statistically insufficient to fit modern ML models.

* Even the number of data is big for us, it can be small given the number of input variables and
model parameters. (hundreds million parameters in a several million input space...)

* Most experiments are planned by human scientists and therefore are subject to a variety of
biases from human cognitive biases, heuristics and social influences.

* Robotization/automation of experiments is promising in terms of reproducibility,
but not a direct solution for this because the chemical space is astronomical (1069 or so).
We might be able to have 106 robots in future, but 1060 would be physically hopeless...

One remedy: Fusing rationalism (theory/simulation) and empiricism (ML/data-driven)
Encoding what we already know for ML not to needlessly explore chemically invalid forms
— |n other words, restrict ML models not to represent irrelevant input-output mappings.



Designing Relevant Inductive Bias for Molecules

Water molecule H20
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Designing Relevant Inductive Bias for Molecules

Water molecule H>0
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SchNet (Schiitt et al, 2017): Standard Geometric GNN
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SchNet (Schiitt et al, 2017): Standard Geometric GNN
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SchNet (Schiitt et al, 2017): Standard Geometric GNN
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SchNet (Schiitt et al, 2017): Standard Geometric GNN
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OSAR/QSPR, OM Approximation, Molecule Generations, ...

DimeNet++

Klicpera et al (NeurlPS WS2022)
https://arxiv.org/abs/2011.14115
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"Learn to Simulate”
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Fusing ML + Quantum Chemistry

Unifying machine learning and quantum chemistry
with a deep neural network for molecular
wavefunctions

K. T. Schiitt, M. Gastegger, A. Tkatchenko &, K.-R. Milller & & R. J. Maurer &
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Fusing ML + Quantum Chemistry

Machine Learning at the Atomic Scale (Chem. Rev.)
https://pubs.acs.org/toc/chreay/121/16
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Combining Machine Learning and Computational Chemistry for
Predictive Insights Into Chemical Systems

John A. Keith,* Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger,

Klaus-Robert Miiller,* and Alexandre Tkatchenko™
I: I Read Online

Cite This: https://doi.org/10.1021/acs.chemrev.1c00107
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Ab Initio Machine Learning in Chemical Compound Space
Bing Huang and O. Anatole von Lilienfeld*

Cite This: Chem. Rev. 2021, 121, 10001-10036
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Data Science Meets Chemistry (Acc. Chem. Res.)
https://pubs.acs.org/page/achre4/data-science-meets-chemistry
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Physics-Inspired Structural Representations for Molecules and
Materials

Felix Musil, Andrea Grisafi, Albert P. Barték, Christoph Ortner, Gdbor Csanyi, and Michele Ceriotti*

I: I Read Online

Cite This: Chem. Rev. 2021, 121, 9759-9815
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Learning to Approximate Density Functionals
Published as part of the Accounts of Chemical Research special issue “Data Science Meets Chemistry”.
Bhupalee Kalita, Li Li, Ryan J. McCarty, and Kieron Burke*
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One Final Remark: "The True Dark Side”

"We're able to predict smth." does not directly mean "We're able to understand it" nor "We're
able to discover it". We still need further considerations to impact natural sciences...
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This slide is available at

Summary https://itakigawa.github.io/news.html

Machine Learning (ML) for Molecules

1. ML in a nutshell 3. The light side:
Deep learning for molecules

* Graph Neural Networks (GNNs)
 (Case 1: Virtual Screening (QSAR/QSPR)
* (Case 2: Fast Approximation for QM Calculations

* ML converts data into "prediction”
* ML is a new (lazy) way of programming

2. The dark side:

Modern aspects of ML 4. Challenges
* High dimensionality: Too many input variables » Rashomon Effect and Underspecification
* Overrepresentation: Too many parameters * Designing Relevant Inductive Bias for Chemistry
* Data hungriness: Big data is big for human, but » Prediction does not directly mean Understanding
can be too small for ML models... or Discovery

May the ML Force be with you...



