INSTITUTE

HSI 2020：Advanced Computational Chemistry Applied Machine Learning for Chemistry

Aug 26：10：30～12：00（90min）
 Aug 26：13：00～14：30（90min）

Ichigaku Takigawa
ichigaku．takigawa＠riken．jp
https：／／itakigawa．github．io
AP
革新知能統合研究センター

You can get this slide PDFs and more.

Brief Bio: Ichigaku TAKIGAWA

Computer Scientist (Machine Learning)

10 years@Hokkaido U (1995~2004)

7 years@Kyoto U
(2005~2011)

7 years @Hokkaido U
(2012~2018)
? years@RIKEN
(2019~)

Statistical Machine Learning \& Signal Processing (Dept. Engineering)

Bioinformatics (Institute for Chemical Research)
Chemoinformatics (Dept. Pharmaceutical Sciences)

Machine Learning (Dept. Information Science and Technology)
JST Presto (Advanced Materials Informatics Group)

Medical-risk Avoidance based on iPS Cells Team (RIKEN Center for Advanced Intelligence Project)
Institute for Chemical Reaction Design and Discovery (Hokkaido U)

Aug 26: 10:30~12:00 (90min)

1. What is "machine learning"?
2. Why does it matter to chemists?
3. Let's try it in your browser (with no setup!)

Aug 26: 13:00~14:30 (90min)

4. Five things all beginners should know

- "The quality of your inputs decide the quality of your output"
- Training / validation / test data
- Tuning hyperparameters
- Identification and design of input variables (or "descriptors")
- "Correlation does not imply causation"

5. Standard pipeline and deep learning
6. Current efforts and future directions

Aug 26: 10:30~12:00 (90min)

1. What is "machine learning"?
2. Why does it matter to chemists?
3. Let's try it in your browser (with no setup!)

Aug 26: 13:00~14:30 (90min)

4. Five things all beginners should know

- "The quality of your inputs decide the quality of your output"
- Training / validation / test data
- Tuning hyperparameters
- Identification and design of input variables (or "descriptors")
- "Correlation does not imply causation"

5. Standard pipeline and deep learning
6. Current efforts and future directions

"machine learning" is a new way of programming

Consider when you need to write a code for a "Rock paper scissors" robot.

ML Zero to Hero - Part 1 https://youtu.be/KNAWp2S3w94

"machine learning" is a new way of programming

Your first task would be to write a code for computers to recognize the hand shapes among rock, paper, or scissors.

ML Zero to Hero - Part 1 https://youtu.be/KNAWp2S3w94

"machine learning" is a new way of programming

But you'll instantly recognize this task is really really hard... we need to consider many variations and nuisances... but human can do this easily.

"machine learning"

Concerned with the question of how to construct computer programs that automatically improve with experience.
———Tom Mitchell
Tasks below would need experience rather than a single principle.

- Learning to recognize spoken words, handwritten characters, etc
- Learning to recognize who is who by seeing faces
- Learning to walk, speak, swim, ski, etc.
- Learning to drive an autonomous vehicle
- Learning to play world-class go, chess, shogi, etc.

"machine learning"

"Machine" means computer programs
"Learning" means to automatically improve with experience

By machine learning, let's get computer programs to automatically improve with experience

But what exactly means....

- Computer programs?
- Automatically improve with experience?

Computer programs

Any computer programs process inputs to get outputs.

Computer programs

Any computer programs process inputs to get outputs.

- We need to explicitly know the complete procedure to get outputs from inputs. Sed
- We manually code the computer program using computer programming languages. (x)

But often we don't know how to do it 웅

Spoken words $\longrightarrow \begin{aligned} & \text { Speech } \\ & \text { Recognizer }\end{aligned} \longrightarrow$ Text words

Consider how we can construct computer programs that can

- Learn to recognize spoken words, handwritten characters, etc
- Learn to recognize who is who
- Learn to walk, speak, swim, ski, etc.
- Learn to drive an autonomous vehicle
- Learn to play world-class go, chess, shogi, etc.

So we give "training data" to teach programs

"automatically improve with experience (given data)"
Spoken words $\longrightarrow \begin{aligned} & \text { Speech } \\ & \text { Recognizer }\end{aligned} \longrightarrow$ Text words
"training data" = examples of input-output pairs
Inputs
Outputs

"hello"
"machine"
"learning"
:

(Supervised) machine learning

Machine learning is a way to construct a computer program directly by a given (large) collection of inputoutput examples without being explicitly programmed.

More typical cases with tabular data

Inputs

Outputs
ML model
x

$\underline{1}$	A	B	C	D	E	F
1	ID	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
2	8	5	3.4	1.5	0.2	setosa
3	51	7	3.2	4.7	1.4	versicolor
4	36	5	3.2	1.2	0.2	setosa
5	15	5.8	4	1.2	0.2	setosa
6	60	5.2	2.7	3.9	1.4	versicolor
7	88	6.3	2.3	4.4	1.3	versicolor
8	126	7.2	3.2	6	1.8	virginica
9	32	5.4	3.4	1.5	0.4	setosa
10	13	4.8	3	1.4	0.1	setosa
11	146	6.7	3	5.2	2.3	virginica
12	5	5	3.6	1.4	0.2	setosa
13	105	6.5	3	5.8	2.2	virginica
14	133	6.4	2.8	5.6	2.2	virginica
15	92	6.1	3	4.6	1.4	versicolor

Underlying principle: Use of statistical trends

We see common patterns (empirical rules) emerge from

 observing many examples, which we cannot recognize when we see only a few.

Characterize the difference between "あ" and "め" not by explicit rules, but by implicit statistical rules directly defined by many observations.

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

Patterns emerge from many examples?

This is all about (supervised) machine learning

Now we got a computer program for this classification problem.

height(cm)

Apple or Orange
+
+
"class label" or "response"

1-dimensional real-number cases = curve fitting

Training data (n examples)

$$
\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}
$$

1-dimensional real-number cases = curve fitting

Training data
(n examples) $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$

1-dimensional real-number cases = curve fitting

Training data
(n examples) $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$ (n examples)

1-dimensional real-number cases = curve fitting

Training data (n examples)

$$
\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}
$$

2-dimensional real-number cases = surface fitting

$\underset{\text { (n examples) }}{\text { Training data }} \quad\left\{\left(\left(x_{1}^{(1)}, x_{2}^{(1)}\right), y^{(1)}\right), \ldots,\left(\left(x_{1}^{(n)}, x_{2}^{(n)}\right), y^{(n)}\right)\right\}$

High-dimensional cases = function fitting

Inputs
$\left(x_{1}, x_{2}, \ldots, x_{784}\right) \longrightarrow$ ML model (surface) (784 real numbers)

An 28×28 (=784) pixel image

Outputs

(10 real numbers)

Probabilities for $0,1,2, \ldots, 9$

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
{[0.0,} & 0.0, & 0.0,0.9 & 0.0 \\
5 & 6 & 7 & { }^{8} \\
9 \\
0.0 & 0.0,0.0, & 0.1, & 0.0
\end{array}
$$

Just fit a 10-dimensional-valued function in 784-dimensional space!

Find a nice mapping $f: \mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$

Machine learning in a nutshell

What ML is doing to tell something valuable about "data in the future" from "data we already have at hand" is:

High-dimensional interpolation by function fitting \rightarrow any surface/curve model

This can be very high-dimensional rather than only 1 dimensional or so in practical situations.

Machine learning in a nutshell

The current "machine learning" usually means Just an interpolation by curve fitting! (3) and does NOT means

- any human-like flexible and deep thinking/reasoning
- any magical ways to bring something unknowable

Aha! Just an interpolation? I know. It'll be easy! 고 Unfortunately NO. First of all, curve fitting in a highdimensional space is not trivial at all, technically speaking. :
And many other hard things come out

High-dimensional interpolation is counter-intuitive

pix2pix

Face swapping (e.g. DeepFake)

CycleGAN

YOLO

Even for machine-learning or Al experts!

Sales teams of high-tech companies sometimes set an unnecessarily high hurdle without knowing what is actually going on...

IEEE Spectrum, 2019 Apr

IBM Watson, Heal Thyself

How IBM overpromised and underdelivered on AI health care

Why ML looks so complicated?

(Generally high-dimensional rather than 1-dimensional)

Why ML looks so complicated?

(Generally high-dimensional rather than 1-dimensional)

Why ML looks so complicated?

(Generally high-dimensional rather than 1-dimensional)

Why ML looks so complicated?

(Generally high-dimensional rather than 1-dimensional)

Why ML looks so complicated?

Extrapolation
Interpolation
Extrapolation

Outputs y

- Many ways (ML models) exist for "curves (surfaces)"
- What models and input representations work best depends on the target problem
- We need to choose appropriate ML models for each given dataset and target problem

Many ML models (Deep learning is one of them)

Many ML models (and problems)

Machine Learning Landscape

Supervised Learning	
Classification	Regression
[Linear dassification]	[Linear regression]
- Logistic / Softmax regregression	- Least squas regression
- Linear discoiminant analysis	- Prinipal component regression
- Nive Pupes dassifies	- Partial Least Squares (PL5) regression
- Perceptron	- Penalined linear regression
- Linear Suppert Vector Mactines (SVM)	LASSO megression (ti-penatized) - Aidge regession (L2.penalied) - ElosticNut regression (LIL.L2-penalived)
[Nonlinear classification]	[Nsolinear regression]
- knearest neigt bor clussfiers	- iknearest neighbor regressors
- Deocion trees (Classifcation tres)	- Decision trees (Rugression trees, Model trees)
- Polynomial dassiters/ Fadorization maxtins	- Polynomial regeessers/Factoriation madines
- Tree ensemble dassifiers	- Tree ensemble regressors
- Random Fouest classifies	- Random Forest regressors
- Exta Trees dasstiers	- Etra Trees regressers
- Gradient Boosted Dedision Trees (CBDT)	- Gradient Boosted Regresion Trees (CRRT)
- Kernel method ctasifies	- Kernel method regressors
- Support Vector Madines (9MM)	- Support Vector Regression (5V1)
-Gausian process dassifiers	- Kemel Ridge Regression
- Neural network (Deep learning) daxifiers	- Guuslan process regressos
-Muls-laye perceptors (MLP)	- Neural network (Deep learring) regressers
- Convolfional networls (CMO)	- Muls liyer perceptons (MLF)
- VCG (0rdordVet)	- Convolutional netwars (CMN)
- Inception (Cooglevet)	- VCG (Odorivet)
- Resinet/ResNext	- Inception (Coogleviet)
- Denseliot	
	- Deerselvet - Recurrent retworks. (FNNO)

Unsupervised

Leaming
Clustering

- k-means
- Hieractical dastering
- Gussian miduers
- Spectral methods
- DESCAN

Decomposition

- Principal componert analysis (PCA)
- Independent component analopsis (CCA)

Canonical cometation analpis (CCA)
-Nonsegative matix fatortation (0)MF)
Latent Dirictlet allocation (LOA)

Manifold learning

- Multidimensionul scaling (MOB)
- Seff-organieing maps (SOM)
- Isomap
- Locally Ineer embedding (ULE)
- Spectral embedding (Laplacian eigenmaps)
- t-dstrbuted Spochastik Neighbor

Embedding ($\cdot 5 \cdot \mathrm{SNE}$)
Autoencoders

Density estimation

Others

Semi supervised learning

 RankingTransfer learning K-shot learning Domain adaptation Multitask learning Reinforcement learning Active learning Model-based optimization Time serles/Sequence models Probabilistic inference (Bayesian, Generative, Graphical) Causal inference Online/Incremental learning Anomaly/Outlier detection Ensemble learning Relational/Network learning Representation learning Structured prediction Meta Learning

- Recurrent network (RNN)

(Supervised) machine learning in other words

Machine learning is a systematic way to find a highdimensional mapping from input to output just by giving a lot of input-output "examples".

input

This lazy idea really works in diverse applications

Search Engine

Advertising

Translation

Transportation

Self-driving

Weather

Medicine

Security

Smart devices, loT, e-Commerce, Manufacturing, Agriculture, Disaster Prevention, Finance, Education, Employment, Matchmaking, and, of course, Science.

Aug 26: 10:30~12:00 (90min)

1. What is "machine learning"?
2. Why does it matter to chemists?
3. Let's try it in your browser (with no setup!)

Aug 26: 13:00~14:30 (90min)

4. Five things all beginners should know

- "The quality of your inputs decide the quality of your output"
- Training / validation / test data
- Tuning hyperparameters
- Identification and design of input variables (or "descriptors")
- "Correlation does not imply causation"

5. Standard pipeline and deep learning
6. Current efforts and future directions

Machine learning for science

The current interests and targets of sciences becomes more complex than ever, and simply put, we need a new way to break through this trend.

Nature, 559
pp. 547-555 (2018)
REVIEW
Machine learning for molecular and materials science

Science, 361
pp. 360-365 (2018)

Science, 293
pp. 2051-2055 (2001)

Science is changing, the tools of science are changing. And that requires different approaches.

Erich Bloch, 1925-2016

Empirical optimization or "Edisonian empiricism"

Empirical optimization or "Edisonian empiricism"

http://www.fourthparadigm.org/

by Tony Hey, Stewart Tansley, Kristin Tolle

The
 F O U R TH
 P A R A D I G M

Data-Inzinaty Sciznzere Descoymen

In The Fourth Paradigm: DataIntensive Scientific Discovery, the collection of essays expands on the vision of pioneering computer scientist Jim Gray for a new, fourth paradigm of discovery based on dataintensive science and offers insights into how it can be fully realized.

Jim Gray on "eScience"

http://research.microsoft.com/en-us/um/people/gray/JimGrayTalks.htm

"eScience" Talk at NRC-CSTB meeting Mountain View CA, 11 January 2007.

His 'last' talk before the disappearance
On January 28, 2007 he failed to return from a short solo trip to the Farallon Islands near San Francisco to scatter his mother's ashes.

Jim Gray

NRC = National Research Council http://sites.nationalacademies.org/NRC/index.htm;
CSTB = Computer Science and Telecom- munications Board http://sites.nationalacademies.org/cstb/index.htm.

Science Paradigms

- Thousand years ago:
science was empirical describing natural phenomena
- Last few hundred years:
theoretical branch
using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today:
data exploration (eScience)

unify theory, experiment, and simulation
- Data captured by instruments Or generated by simulator
- Processed by software
- Information/Knowledge stored in computer
- Scientist analyzes database / files using data management and statistics

X-Info

- The evolution of X-Info and Comp-X for each discipline X
- How to codify and represent our knowledge

The Generic Problems

- Data ingest
- Managing a petabyte
- Common schema
- How to organize it
- How to reorganize it
- How to share with others
- Query and Vis tools
- Building and executing models
- Integrating data and Literature
- Documenting experiments
- Curation and long-term preservation

Science Paradigms

- Thousand years ago:
science was empirical describing natural phenomena
- Last few hundred years:
theoretical branch
using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today:
data exploration (eScience)

unify theory, experiment, and simulation
- Data captured by instruments Or generated by simulator
- Processed by software
- Information/Knowledge stored in computer
- Scientist analyzes database / files using data management and statistics

- Today: data exploration (eScience)
unify theory, experiment, and simulation
- Data captured by instruments

Or generated by simulator

- Processed by software
- Information/Knowledge stored in computer
- Scientist analyzes database / files using data management and statistics

This would be more strongly complemented by
Machine learning or AI, or data sciences.

The interest of science

Related factors \qquad
 and their states (data)

- Theory-driven (rational, deductive) approach

Ideally, the smallest number of dominant factors

Whether or not theory is correct can be validated

- Data-driven (empirical, inductive) approach

Predictive modeling by machine learning

Quantitative structure-activity/property relationship (QSAR/QSPR)

Quantum Mechanics

- QM7
- QM7b

Physical
Chemistry

- ESOL
- FreeSolv

MoleculeNet: A Benchmark for Molecular Machine Learning https://arxiv.org/abs/1703.00564
https://github.com/deepchem/deepchem (https://deepchem.io/)

Many levels of interest

- Mutagenic potency

 $+1$

$+1$

-1

-1
- Carcinogenic potency

$+1$

$+1$

 -1

$+1$
 $+1$
- Endocrine disruption

- Growth inhibition

- Aqueous solubility

Data-driven approximation to quantum chem

Quantum chemistry structures and properties of 134 kilo molecules, Scientific Data 1, 140022 (2014) http://www.nature.com/articles/sdata201422 http://quantum-machine.org/datasets/

U_{0}, U, H, G
$\omega_{1}, \mathrm{ZPVE}$
$\varepsilon_{\text {HOMO }}, \varepsilon_{\mathrm{LUMO}}, \Delta \varepsilon$
$\left\langle R^{2}\right\rangle, \mu, \alpha$

Structure in the ground state

15 properties in the ground state

Sounal od Clenial Thesy ard Compuation

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error

Felix A. Faber, ${ }^{\dagger}$ Luke Hutchison, ${ }^{\dagger}$ Bing Huang, Justin Gilmer, ${ }^{\dagger}$ Samuel S. Schoenholz, ${ }^{\dagger}$ George E. Dahl, ${ }^{\ddagger}$ Oriol Vinyals, ${ }^{1}$ Steven Kearnes, ${ }^{\ddagger}$ Patrick F. Riley, ${ }^{\ddagger}$ and O. Anatole von Lilienfeld ${ }^{*, *}{ }^{\dagger}$

https://doi.org/10.1038/s41570-020-0189-9

PERSPECTIVES

nature reviews chemistry

Exploring chemical compound space with quantum-based machine learning

Abstract

O. Anatole von Lilienfeld, Klaus-Robert Müller and Alexandre Tkatchenko©

Abstract | Rational design of compounds with specific properties requires understanding and fast evaluation of molecular properties throughout chemical compound space - the huge set of all potentially stable molecules. Recent advances in combining quantum-mechanical calculations with machine learning provide powerful tools for exploring wide swathes of chemical compound space. We present our perspective on this exciting and quickly developing field by discussing key advances in the development and applications of quantum-mechanics-based machine-learning methods to diverse compounds and properties, and outlining the challenges ahead. We argue that significant progress in the exploration and understanding of chemical compound space can be made through a systematic combination of rigorous physical theories, comprehensive synthetic data sets of microscopic and macroscopic properties, and modern machine-learning methods that account for physical and chemical knowledge.

"Molecular Machine Learning"

Given n input-output instances (as the training data)

$$
\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}
$$

Fit the model $f_{\boldsymbol{\theta}}$ by tuning $\boldsymbol{\theta}$ as

$$
\min _{\boldsymbol{\theta}} \sum_{i=1}^{n} \operatorname{error}\left(y_{i}, \hat{y}_{i}\right) \quad \text { where } \quad \hat{y}_{i}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

Note: the error measure (called "loss function" in ML) depends on problems

Inverse design?

"machine learning"

Bayesian optimization / Black-box optimization / Sequential design of experiments / Model-based optimization

Aug 26: 10:30~12:00 (90min)

1. What is "machine learning"?
2. Why does it matter to chemists?
3. Let's try it in your browser (with no setup!)

Aug 26: 13:00~14:30 (90min)
4. Five things all beginners should know

- "The quality of your inputs decide the quality of your output"
- Training / validation / test data
- Tuning hyperparameters
- Identification and design of input variables (or "descriptors")
- "Correlation does not imply causation"

5. Standard pipeline and deep learning
6. Current efforts and future directions

Now is the good timing to start machine learning!

Let's give it a try anyway!
All you need for now is a web browser only. (on your PC or smartphones)
https://colab.research.google.com/

Google Colab (Google Colaboratory)

https://colab.research.google.com/

Google Colab（Google Colaboratory）

https：／／colab．research．google．com／

\triangle UntitledO．ipynb
File Edit View Insert Runtime Tools Help
$\equiv \quad$＋Code + Text

（＞［1］ 28 ＊ 28
■［ $\quad 784$
\overbrace{i}
You can input a Python code here and run it by clicking the button
（or by Shift＋Enter）

Let's reproduce a paper-level result!

RSC Advances

CrossMark
thalter mase

Ote this: FSCC Adr, 2016. 6, 52587

Received 18th February 2016 Accepted 23rd May 2016

DOI: $101039 / \mathrm{c}$ (ra04545C
www.rscorg/advances

Machine-learning prediction of the d-band center for metals and bimetals

Ichigaku Takigawa, ${ }^{* a b}$ Ken-ichi Shimizu, ${ }^{\text {cd }}$ Koji Tsuda ${ }^{\text {ef0 }}$ and Satoru Takakusagi ${ }^{\text {c }}$

The d-band center for metals has been widely used in order to understand activity trends in metal-surfacecatalyzed reactions in terms of the linear Brensted-Evars-Polanyi relation and Hammer-Nerskov d-band model In this paper, the d-band centers for eleven metals (Fe, Co. Ni, Cu, Mu, Ph, Pd, Ag. Ir, Pt. Aul and their pairwise bimetals for two different structures (1% metal doped- or overlayer-covered metal surfaces) are statistically predicted using machine learning methods from readily avalable values as descriptors for the target metats (such as the density and the enthalpy of fusion of each metal). The predictive accuracy of four regression methods with different numbers of descriptors and different test-set/training-set ratios are quantitatively evaluated using statistical cross validations. It is shown that the d-band centers are reasonably well predicted by the gradiert boosting regression (GBR) method with only six descriptors, even when we predict 75% of the data from only 25% given for training (average root mean square error (RMSE) $<0.5 \mathrm{eV}$). This demonstrates a potential use of machine learning methods for predicting the activity trends of metal surfaces with a negligible CPU time compared to first-principles methods.

Let's reproduce a paper-level result!

Table 1 DFT calculated d-band centers ((VV) of metals fitalic) and 1% guest metals (M_{0}) doped in the surface of host metals (M_{n}) as reported by Nerskov's group ${ }^{12}$

M,	M_{8}										
	Fe	Co	Ni	Cu	Ha	Rh	Pd	Ag	Ir	Pt	Aa
Fe	-0.92	-0.87	-1.12	-1.05	-1.21	-1.46	-2.16	-1.75	-1.28	-2.01	-2.34
Co	-1.16	-1.17	-1.45	-1.33	-1.41	-1.75	-2.54	-2.08	-1.53	-2.36	-2.73
Ni	-1.20	-1.10	-1.29	-1.10	-1.43	-1.60	-2.26	-1.82	-1.43	-2.09	-2.42
Cu	-2.11	-2.07	-2.40	-2.67	-2.09	-2.35	-3.31	-3.37	-2.09	-3.00	-3.76
Ru	-1.20	-1.15	-1.40	-1.29	-1.41	-1.58	-2.23	-1.68	-1.39	-203	-2.25
Rh	-1.49	-1.39	-1.57	-1.29	-1.69	- 1.73	-2.27	-1.66	-1.56	-2.08	-2.22
Pd	-1.46	-1.29	-1.33	-0.89	-1.59	-1.47	-1.83	-1.24	-1.30	-1.64	-1.66
Ag	-3.58	-3.46	-3.63	-3.83	-3.46	-3.44	-4.16	-4.30	-3.16	-3.80	-4.45
Ir	-1.90	-1.84	-2.06	-1.90	-2.02	-2.26	-2.84	-2.24	-2.11	-267	-2.85
Ft	-1.92	-1.77	-1,85	-1.53	-2.11	-2.02	-2.42	-1.81	-1.87	-2.25	-2.50
Aa	-2.93	-2.79	-2.93	-3.01	-2.85	-2.81	-3.39	-3.35	-2.58	-3.10	-3.56

Table 3 Input features (descriptors) used for prediction of d-band centers from ref. 34^{a}

				AM / g mol^{-1}	P	EN	$\mathrm{IE} /$ eV	$\Delta_{\text {fus }} H / \mathrm{J}$ g^{-1}	ρ / g cm^{-3}
Metal	G	R / \AA	AN						
Fe	8	2.66	26	55.85	4	1.83	7.90	247.3	7.87
Co	9	2.62	27	58.93	4	1.88	7.88	272.5	8.86
Ni	10	2.60	28	58.69	4	1.91	7.64	290.3	8.90
Cu	11	2.67	29	63.55	4	1.90	7.73	203.5	8.96
Ru	8	2.79	44	101.07	5	2.20	7.36	381.8	12.10
Rh	9	2.81	45	102.91	5	2.28	7.46	258.4	12.40
Pd	10	2.87	46	106.42	5	2.20	8.34	157.3	12.00
Ag	11	3.01	47	107.87	5	1.93	7.58	104.6	10.50
Ir	9	2.84	77	192.22	6	2.20	8.97	213.9	22.50
Pt	10	2.90	78	195.08	6	2.20	8.96	113.6	21.50
Au	11	3.00	79	196.97	6	2.40	9.23	64.6	19.30

Table 1 and Table 3

Fig 1

d-band center (DFT) $/ \mathrm{eV}$
GPR

Fig. 1 DFT calculated local d-band center for metals and 1% guest metal-doped metals (Table 1) and the values predicted by linear (OLS, PLS) and nonlinear regression (GPR, GBR): ($)$ training set $=75 \%$, (O) test set $=25 \%$.

Let's reproduce a paper-level result!

Table 1: the energy of the d-band center relative to the Fermi level (ε_{F}), $\varepsilon-\varepsilon_{\mathrm{F}}$ for 1% guest metals doped in the surface of host metals.

Limit: Two-level problem
(perturtation theory applies)

	Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Ir	Pt	Au
Fe	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09	-1.42
		0.14	-0.04	-0.0.5	-0.73	-0.72	-1.32	-1.25	-0.95	-1.48	-2.19
Co	0.01	-1.17	-0.28	-0.16	-0.24	-0.58	-1.37	-0.91	-0.36	-1.19	-156
	-0.01		-0.20	-0.06	-0.70	-0.95	-1.65	-1.36	-1.09	-1.89	-2.39
Ni	0.09	0.19	-1.29	0.19	-0.14	-0.31	-0.97	-0.53	-0.14	-0.80	-1.13
	0.96	0.11		0.12	-0.63	-0.74	-1.32	-1.14	-0.86	-1.53	-2.10
Cu	0.56	0.60	0.27	-2.67	0.58	0.32	-0.64	-0.70	0.58	-0.33	-1.09
	0.25	038	0.18		-0.22	-0.27	-1.04	-1.21	-0.32	-1.15	-1.96
Ru	0.21	0.26	0.01	0.12	-1.41	-0.17	-0.82	-0.27	0.02	-0.62	-084
	0.30	037	0.29	0.30		-0.12	-0.47	-0.40	-0.13	-0.61	-0.86
Rh	0.24	034	0.16	0.44	0.04	-1.73	-0.54	0.07	0.17	-0.35	-0.49
	0.31	0.41	0.34	0.22	0.03		-0.39	-0.08	0.03	-0.45	-0.57
Pd	0.37	054	0.50	0.94	0.24	0.36	- I.83	0.59	0.53	0.19	0.17
	0.36	0.54	0.54	0.80	-0.11	0.25		0.15	031	0.04	-0.14
Ag	0.72	0.84	0.67	0.47	0.84	0.86	0.14	-4.30	1.14	0.50	-0.15
	0.55	0.74	0.68	0.62	0.50	0.67	0.27		0.80	0.37	$=0.21$
Ir	0.21	0.77	0.05	0.21	0.09	-0.15	-0.73	-0.13	-2.11	-0.56	-0.74
	0.33	0.40	0.33	056	-0.01	-0.03	-0.42	-0.09		-0.49	-0.59
Pl	0.33	0.48	0.40	0.72	0.14	0.23	-0.17	0.44	0.38	-2.25	-0.05
	0.35	053	0.54	0.78	0.12	0.24	0.02	0.19	0.29		-008
Au	0.63	0.77	0.63	0.55	0.70	0.75	0.17	0.21	0.98	0.46	-3.56
	0.53	0.74	0.71	0.70	0.47	0.67	0.35	0.12	0.79	0.43	

The impurity/overlayer atoms are listed horizontally and the host entries are listed vertically. For each combination of the two numbers listed is first the isolated surface impurity given and than the overlayer. The surfaces considered are the most close packed and the overlayer structures are pseudomorphic. No relaxations from the host lattice positions are incladed. All values are in eV and the elemental d band cemers are relative to the Fermi level.

Let's reproduce a paper-level result!

You can get the

part of the original data

[1] import numpy as np
import pandas as pd
[2] url = "https://itakigawa.github.io/data/hsi2020/data_impurities.csv"

```
my_table = pd.read_csv(url, index_col=0)
```

[3] my_table

	Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Ir	Pt	Au
Fe	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09	-1.42
Co	0.01	-1.17	-0.28	-0.16	-0.24	-0.58	-1.37	-0.91	-0.36	-1.19	-1.56
Ni	0.09	0.19	-1.29	0.19	-0.14	-0.31	-0.97	-0.53	-0.14	-0.80	-1.13
Cu	0.56	0.60	0.27	-2.67	0.58	0.32	-0.64	-0.70	0.58	-0.33	-1.09
Ru	0.21	0.26	0.01	0.12	-1.41	-0.17	-0.82	-0.27	0.02	-0.62	-0.84

handle table data by "pandas"

($\left.{ }^{\text {my_table.loc }[' \mathrm{Co}}{ }^{\prime},{ }^{\prime} \mathrm{Ni}{ }^{\prime}\right]$
$[\rightarrow-0.28$

	$\mathbf{F e}$	Co	Ni	$\mathbf{C u}$	$\mathbf{R u}$	$\mathbf{R h}$	$\mathbf{P d}$	$\mathbf{A g}$	$\mathbf{I r}$	$\mathbf{P t}$	$\mathbf{A u}$
$\mathbf{F e}$	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09	-1.42
Co	0.01	-1.17	-0.28	-0.16	-0.24	-0.58	-1.37	-0.91	-0.36	-1.19	-1.56
Ni	0.09	0.19	-1.29	0.19	-0.14	-0.31	-0.97	-0.53	-0.14	-0.80	-1.13
Cu	0.56	0.60	0.27	-2.67	0.58	0.32	-0.64	-0.70	0.58	-0.33	-1.09
Ru	0.21	0.26	0.01	0.12	-1.41	-0.17	-0.82	-0.27	0.02	-0.62	-0.84

$\square \mathrm{Fe} \quad 0.01$
Co -1.17
$\mathrm{Ni} \quad-0.28$
$\mathrm{Cu} \quad-0.16$
Ru $\quad-0.24$
Rh $\quad-0.58$
Pd -1.37
Ag $\quad 0.91$
Ir $\quad-0.36$
Pt -1.19
$\mathrm{Au} \quad-1.56$

	Fe	Co	Ni	$\mathbf{C u}$	$\mathbf{R u}$	$\mathbf{R h}$	$\mathbf{P d}$	$\mathbf{A g}$	$\mathbf{I r}$	$\mathbf{P t}$	$\mathbf{A u}$
$\mathbf{F e}$	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09	-1.42
$\mathbf{C o}$	0.01	-1.17	-0.28	-0.16	-0.24	-0.58	-1.37	-0.91	-0.36	-1.19	-1.56
Ni	0.09	0.19	-1.29	0.19	-0.14	-0.31	-0.97	-0.53	-0.14	-0.80	-1.13
Cu	0.56	0.60	0.27	-2.67	0.58	0.32	-0.64	-0.70	0.58	-0.33	-1.09
Ru	0.21	0.26	0.01	0.12	-1.41	-0.17	-0.82	-0.27	0.02	-0.62	-0.84

Name: Co, dtype: float64

handle table data by "pandas"

(1) for h in my_table.index:
for g in my_table.columns:
print(f'host $\{\mathrm{h}\}$, guest $\{\mathrm{g}\}$, val \{my_table.loc[h, g]\}')
[\rightarrow host Fe , guest Fe , val -0.92
host Fe , guest Co, val 0.05
host Fe , guest Ni, val -0.2
host Fe , guest Cu , val -0.13
host Fe , guest Ru , val -0.29
host Fe , guest Rh , val -0.54

columns

		Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Ir	Pt	Au
index	Fe	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09	-1.42
	Co	0.01	-1.17	-0.28	-0.16	-0.24	-0-58	-1.37	-0.91	-0.36	-1.19	-1.56
	Ni	0.09	0.19	-1.29	0.19	-0.14	-0.39	-0.97 ${ }^{\text {- }}$	-0.53	-0.14	-0.80	-1.13
	Cu	0.56	0.60	0.27	-2.67	-0.58	-0.32-	-0:64	-0.70	0.58	-0.33	-1.09
	Ru	0.21	0.26	0.01	0.12	41	-0:17	=0.82	-0.27	0.02	-0.62	-0.84

Get Table 1

A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver and J. K. Norskov, J. Mol. Catal. A: Chem., 1997, 115, 421-429.

Table 1
Shifts in d-band centers of surface impurities and overlayers relative to the clean metal values (italic)

	Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Ir	Pt
Fe	-0.92	0.05	-0.20	-0.13	-0.29	-0.54	-1.24	-0.83	-0.36	-1.09

($)$ for h in my_table.index:

$$
\text { for } g \text { in my_table.columns: }
$$

$$
\text { if } \mathrm{h}:=\mathrm{g} \text { : }
$$

my_table.loc[h, g] += my_table.loc[h, h]
my_table

	Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Ir	Pt	Au
Fe	-0.92	-0.87	-1.12	-1.05	-1.21	-1.46	-2.16	-1.75	-1.28	-2.01	-2.34
Co	-1.16	-1.17	-1.45	-1.33	-1.41	-1.75	-2.54	-2.08	-1.53	-2.36	-2.73
Ni	-1.20	-1.10	-1.29	-1.10	-1.43	-1.60	-2.26	-1.82	-1.43	-2.09	-2.42
Cu	-2.11	-2.07	-2.40	-2.67	-2.09	-2.35	-3.31	-3.37	-2.09	-3.00	-3.76

Our goal here is the following machine learning.

Inputs	Outputs
$x \longrightarrow \quad$ ML model	$\xrightarrow[1 \text { number }]{y}$
$9+9=18$ numbers \quad ML	
1 8, 2.66, 26, 55.85, 4, 1.83, 7.99, 247.3 ,	-1.05
9 features (host metal) from Table 3	the value at Table 1 for the host and guest metal
9 features (guest metal) from Table 3	
Table 3 Input features (descriptors) used for prediction of d-band centers from ref. 34^{a}	
	Cu -2.11-2.07-2.40-2.67-209

Let's make the inputs

```
[17] ur12 = "httpas//itakigawa.github.io/data/hsi2020/Leatures9.egv"
    feat = pd.read_csv(ur12, index_ool=0)
[18] feat,head(3)
[
name Num of d-
Bulk
wigner- atomic atonie
    seitz number mass period electronegativity
``` onergy (ev)
```

    symbol
    | Fe | Iron | 8 | 2.66 | 26 | 55.8450 | 4 | 1.83 | 7.9024 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Co | Cobalt | 9 | 2.62 | 27 | 58.9332 | 4 | 1.88 | 7.8810 |
| Ni | Nickel | 10 | 2.60 | 28 | 58.6934 | 4 | 1.91 | 7.6398 |

```

[+ name
Cobslt
Nun of d-electrons 9
Bulk wigner-seitz radius
2.62
atomic number 27

\section*{Let's make the inputs}
```

feat.drop('name', axis='columns', inplace=True)
X = list()
Y= list()
for h in ny_table.index:
for g in my_table.colunns:

```
```

        vec_h = feat.loc[h].to_numpy()
    ```
 vec_h = feat.loc[h].to_numpy()
 vec_g = feat.loc[g].to_nunpy()
 vec_g = feat.loc[g].to_nunpy()
 x_val = np.concatenate((vec_h, vec_g))
 x_val = np.concatenate((vec_h, vec_g))
 Y_val = my_table.loc[h][g]
 Y_val = my_table.loc[h][g]
 x.append (x_val)
 x.append (x_val)
 Y-append(}\mp@subsup{Y}{-}{\prime}\mathrm{ val)
 Y-append(}\mp@subsup{Y}{-}{\prime}\mathrm{ val)
 if h=m'Fe' and g== 'Cu':
 if h=m'Fe' and g== 'Cu':
 print({'host({b}), guest({g}), input={x_val}, output={Y_val}')
```

            print({'host({b}), guest({g}), input={x_val}, output={Y_val}')
    ```

```

    7.87 11. 2.67 29.
    203.5 8.96 1, output=-1.05
        63.546 4. 1.9 7.7264
        4
    ```

```

$$
\begin{array}{r}
{[8,2.66,26,55.85,4,1.83,7.90,247.3,7.87,} \\
11,2.67,29,63.55,4,1.90,7.73,203.5,8.96]
\end{array}
$$

$$
-1.05
$$

```

\section*{Our (X, y) data}

\(d f=\) pd.Datarrame \(\left(X\right.\), colu'rnsw \(\left[f^{\prime} x\{i+1\}^{*}\right.\) for \(i\) in range(18) 1\()\) \(d f\left[{ }^{\prime} y^{\prime}\right]=y\)
df

\section*{The full code for preparation (only 21 lines!)}
```

( import numpy as np
import pandas as pd
url1 = "https://itakigawa.github.io/data/hsi2020/data_impurities.csv"
ur12 = "https://itakigawa.github.io/data/hsi2020/features9.csv"
my_table = pd.read_csv(url1, index_col=0)
feat = pd.read_csv(url2, index_col=0)
feat.drop('name', axis='columns', inplace=True)
for h in my_table.index:
for g}\mathrm{ in my_table.columns:
if h != g:
my_table.loc[h, g] += my_table.loc[h, h]
X = list()
y = list()
for h in my_table.index:
for g in my_table.columns:
vec_h = feat.loc[h].to_numpy()
vec_g = feat.loc[g].to_numpy()
X.append(np.concatenate((vec_h, vec_g)))
y.append(my_table.loc[h][g])
X = np.stack(X)
y = np.array(y)

```

\section*{Now we can move on to the "machine learning " part!}
[8] X.shape, y.shape

C \(\rightarrow \quad((121,18),(121)\),
The number of input-output examples is 121 . So we'll use random 30 examples for evaluation, and the remaining 91 examples for the model fitting.
[21] from sklearn.utils import shuffle
\(\mathrm{X}, \mathrm{y}=\operatorname{shuffle}(\mathrm{X}, \mathrm{y}) ~ \longleftarrow\) This shuffling is
X_train, \(y_{\text {_train }}=\mathrm{X}[:-30\), :], \(\mathrm{y}[:-30]\)
X_test, \(y_{-}\)test \(=\mathrm{X}[-30:, \mathrm{l}, \mathrm{y}[-30:]\) quite important.

See what happens if you skip it, and think why.
[23] from sklearn.ensemble import GradientBoostingRegressor model \(=\) GradientBoostingRegressor()
model.fit(X_train, y_train)
Y_pred_train \(=\) model.predict(X_train)
Y_pred_test \(=\) model.predict(X_test)

\section*{Make a plot.}
(import matplotlib.pyplot as plt
```

fig, ax = plt.subplots()
ax.scatter(y_train, y_pred_train, \
alpha=0.5, color="blue", label="training")
ax.scatter(y_test, y_pred_test, \
alpha=0.5, color="red", label="test")
ax.legend()
ax.set_xlabel('groudtruth')
ax.set_ylabel('prediction')
ax.set_aspect("equal")

```
C

Fig. 1 DFT calculated local d-band center for metals and \(1 \%\) guest metal-doped metals (Table 1) and the values predicted by linear (OLS, PLS) and nonlinear regression (GPR, GBR): () training set \(=75 \%,(\mathrm{O})\) test set \(=25 \%\).

\section*{The paper used only 6 features out of 18...}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & Fe & Co & Ni & Cu & Ru & Rh & Pd & Ag & Ir & Pt & Au \\
\hline Fe & -0.92 & & -0.96 & -0.97 & -1.65 & -1.64 & -2.24 & & -1.87 & -2.4 & -3.11 \\
\hline Co & & & -1.37 & -1.23 & & -2.12 & -2.82 & -2.53 & -2.26 & & -3.56 \\
\hline Ni & -0.33 & -1.18 & & & -1.92 & -2.03 & & -2.43 & -2.15 & -2.82 & -3.39 \\
\hline Cu & -2.42 & & -2.49 & -2.67 & -2.89 & -2.94 & & & & -3.82 & -4.63 \\
\hline Ru & -1.11 & -1.04 & -1.12 & & -1.41 & & -1.88 & -1.81 & -1.54 & & -2.27 \\
\hline Rh & -1.42 & -1.32 & & -1.51 & -1.7 & -1.73 & -2.12 & -1.81 & -1.7 & -2.18 & -2.3 \\
\hline Pd & -1.47 & -1.29 & -1.29 & -1.03 & & -1.58 & -1.83 & -1.68 & -1.52 & -1.79 & \\
\hline Ag & -3.75 & -3.56 & -3.62 & & -3.8 & & -4.03 & & -3.5 & -3.93 & -4.51 \\
\hline Ir & -1.78 & -1.71 & -1.78 & -1.55 & & -2.14 & -2.53 & -2.2 & -2.11 & -2.6 & -2.7 \\
\hline Pt & & & -1.71 & -1.47 & -2.13 & -2.01 & -2.23 & -2.06 & -1.96 & & -2.33 \\
\hline Au & -3.03 & -2.82 & -2.85 & & & -2.89 & & -3.44 & & & -3.56 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & Fe & Co & Ni & Cu & Ru & Rh & Pd & Ag & Ir & Pt & Au \\
\hline Fe & & -0.78 & & & -1.65 & -1.64 & & & -1.87 & & \\
\hline Co & -1.18 & -1.17 & -1.37 & & -1.87 & -2.12 & -2.82 & & -2.26 & & \\
\hline Ni & -0.33 & -1.18 & & -1.17 & & & -2.61 & -2.43 & -2.15 & -2.82 & \\
\hline Cu & -2.42 & & & & -2.89 & -2.94 & & -3.88 & & & -4.63 \\
\hline Ru & -1.11 & -1.04 & -1.12 & -1.11 & -1.41 & & & -1.81 & & & -2.27 \\
\hline Rh & -1.42 & & & -1.51 & & & -2.12 & -1.81 & -1.7 & & \\
\hline Pd & & -1.29 & -1.29 & -1.03 & & -1.58 & -1.83 & & -1.52 & -1.79 & \\
\hline Ag & & & & -3.68 & -3.8 & -3.63 & & & & & -4.51 \\
\hline Ir & & & & & & -2.14 & & & -2.11 & & -2.7 \\
\hline Pt & & & -1.71 & -1.47 & -2.13 & -2.01 & -2.23 & -2.06 & & & \\
\hline Au & & & & -2.86 & -3.09 & -2.89 & & -3.44 & & & -3.56 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & Fe & Co & Ni & Cu & Ru & Rh & Pd & Ag & Ir & Pt & Au \\
\hline Fe & & & & & & & & -2.17 & & & -3.11 \\
\hline Co & & -1.17 & -1.37 & & & -2.12 & & & & & \\
\hline Ni & -0.33 & -1.18 & & & & & -2.61 & -2.43 & & & \\
\hline Cu & -2.42 & -2.29 & -2.49 & & & & -3.71 & & & & -4.63 \\
\hline Ru & & & & & & & & & & -2.02 & \\
\hline Rh & & -1.32 & & & & -1.73 & -2.12 & & & & \\
\hline Pd & & & & & -1.94 & & -1.83 & & & & -1.97 \\
\hline Ag & -3.75 & & & -3.68 & & & & & & & -4.51 \\
\hline Ir & -1.78 & -1.71 & & & & & & & & & -2.7 \\
\hline Pt & & & & & -2.13 & & & & & & \\
\hline Au & & & & & -3.09 & -2.89 & & & & & \\
\hline
\end{tabular}

\section*{We can also easily compute the quantitative performance!}
https://en.wikipedia.org/wiki/Root-mean-square_deviation
-
from sklearn.metrics import mean_squared_error
rmse_tr = mean_squared_error(y_train, y_pred_train, squared=False)
rmse_te \(=\) mean_squared_error (y _test, \(\mathrm{y} _\)pred_test, squared=False)
print(f'RMSE(training) \{rmse_tr:. 3 f\(\}\) ')
print(f'RMSE(test) \{rmse_te:.3f\}')
[] RMSE(training) 0.041
RMSE(test) 0.141
root-mean-square error \((\) RMSE \()=\operatorname{sqrt}(\) RMSE \()=\)
\[
\sqrt{\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}}{n}}
\]
[34] from sklearn.model_selection import cross_val_score, ShuffleSplit cvf \(=\) ShuffleSplit(n_splits=100, test_size \(=0.25\))
scores \(=\) cross_val_score(model, \(\mathrm{X}, \mathrm{y}, \mathrm{cv}=\mathrm{cvf}, ~ \\)
scoring='neg_root_mean_squared_error') Do this calculation over
print(f'100 times mean RMSE: \{-scores.mean():.3f\}')
C] 100 times mean RMSE: 0.153

100 random splits into \(75 \%\) / 25\% subsets, and take the average of 100 RMSEs.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & Fe & Co & Ni & Cu & Ru & Rh & Pd & Ag & Ir & Pt & Au \\
\hline \(\mathbf{F e}\) & -0.92 & & -0.96 & -0.97 & -1.65 & -1.64 & -2.24 & & -1.87 & -2.4 & -3.11 \\
\hline \(\mathbf{C o}\) & & & -1.37 & -1.23 & & -2.12 & -2.82 & -2.53 & -2.25 & & -3.56 \\
\hline Ni & -0.33 & -1.18 & & & -1.92 & -2.03 & & -2.43 & -2.15 & -2.82 & -3.39 \\
\hline Cu & -2.42 & & -2.49 & -2.67 & -2.89 & -2.94 & & & & -3.82 & -4.63 \\
\hline \(\mathbf{A u}\) & -1.11 & -1.04 & -1.12 & & -1.41 & & -1.85 & -1.81 & -1.54 & & -2.27 \\
\hline \(\mathbf{F h}\) & -1.42 & -1.32 & & -1.51 & -1.7 & -1.73 & -2.12 & -1.81 & -1.7 & -2.18 & -2.3 \\
\hline \(\mathbf{P d}\) & -1.47 & -1.29 & -1.29 & -1.03 & & -1.58 & -1.83 & -1.68 & -1.52 & -1.79 & \\
\hline \(\mathbf{A g}\) & -3.75 & -3.56 & -3.62 & & -3.8 & & -4.03 & & -3.5 & -3.83 & -4.51 \\
\hline \(\mathbf{I r}\) & -1.78 & -1.71 & -1.78 & -1.55 & & -2.14 & -2.53 & -2.2 & -2.11 & -2.6 & -2.7 \\
\hline \(\mathbf{P t}\) & & & -1.71 & -1.47 & -2.13 & -2.01 & -2.23 & -2.06 & -1.96 & & -2.33 \\
\hline \(\mathbf{A u}\) & -3.03 & -2.82 & -2.85 & & & -2.89 & & -3.44 & & & -3.56 \\
\hline
\end{tabular}

\section*{Ignoring all problem-specific data preparation...}

\section*{https://scikit-learn.org/stable/}

Cearit instal User Oulde Api Examples Move

\section*{scikit-learn}

Machine Learning in Python
Oetting Started Aelease Highights for 0.23

\section*{Classification}

Identifing wich catiggary an oblect belongs to.
Applications: Spap detection inage recognition.
Algorithma: 51 M , nearest neighbork, random fovest. and mare.

\(\square\)

\section*{Enmple}

\section*{Dimensionality reduction}

Aedjoing the number of random variables to tonsider.

Applications: Vievalization incressed efficiency
Algorithma: \(k\)-Moans, fosture salection nosnogative satris lactorlration, and mare.

\section*{Regression}

Predicting a continucus-valuad attribute astociated wat at object.

Applications: Dnug response. Stpck prices. Algorithma: SVk, neareal neighbork, random lowst, and mere-

fatrow

\section*{Model selection}

Compaing validating and chooving parampters and models.

Applications: improved accuracy via parameter funing
Agorithess: gid wearch cross vilidation

\section*{Clustering}

Autornatic grouping of similar obiects into sets.
Applleatians! Customer segmentation Orouping experiment oubcomes
Algorithma: K-Weans, spectrwl clustering manhwht and more.

Ex moles

\section*{Preprocessing}

Feature extraction and normalzation
Applications: Trunslorming input dana such is sest for use with machine learning alporithms Algorithma: preperocessing, feature eatraction. and mose

\section*{Aug 26: 10:30~12:00 (90min)}
1. What is "machine learning"?
2. Why does it matter to chemists?
3. Let's try it in your browser (with no setup!)

\section*{Aug 26: 13:00~14:30 (90min)}
4. Five things all beginners should know
- "The quality of your inputs decide the quality of your output"
- Training / validation / test data
- Tuning hyperparameters
- Identification and design of input variables (or "descriptors")
- "Correlation does not imply causation"
5. Standard pipeline and deep learning
6. Current efforts and future directions```

